简单的使用Pyqt5 识别图片边缘
2019-09-24
python
1810
图片识别部分:
import cv2 import numpy as np import time class ImageTool: def __init__(self): pass def img2gray(self, file, newfile): img = cv2.imread(file) qimg_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) cv2.imwrite(newfile, qimg_gray) def imgColor(self, img, color="r"): img = cv2.imread(img, cv2.IMREAD_COLOR) dt = dict() dt["r"] = img[:, :, 0] dt["g"] = img[:, :, 1] dt["b"] = img[:, :, 2] # r,g,b = cv2.split(img) return dt[color] def img2color(self, file, newfile, color="r"): img = cv2.imread(file) dt = dict() dt["r"] = img[:, :, 0] dt["g"] = img[:, :, 1] dt["b"] = img[:, :, 2] cv2.imwrite(newfile, dt[color]) def imgGray(self, file): img = cv2.imread(file) return cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) def img2pos(self, img): h = img.shape[0] w = img.shape[1] color = np.array(img) filter = 100 color_pos = dict() xs = [] ys = [] for x in range(w): for y in range(h): # print("x:%d ,y: %d" % (x,y)) value = color[y][x] flag = 0 if x - 1 >= 0 and x + 1 < w and y - 1 > 0 and y + 1 < h: if color[y][x - 1] == 0 and value > filter: flag = 1 elif color[y][x + 1] == 0 and value > filter: flag = 1 elif color[y - 1][x] == 0 and value > filter: flag = 1 elif color[y + 1][x] == 0 and value > filter: flag = 1 if flag == 1: xs.append(x) ys.append(y) color_pos["{},{}".format(x, y)] = value return xs, ys, color_pos def imgEdge(self, img): xs, ys, pos = self.img2pos(img) maxX = max(xs) minX = min(xs) maxY = max(ys) minY = min(ys) return pos, minX, maxX, minY, maxY # img 缺口图片 # mapimg 匹配的图片 def match(self, img, mapimg): tool = ImageTool() mapimg = tool.imgGray(mapimg) img = tool.imgGray(img) edge, minX, maxX, minY, maxY = tool.imgEdge(img) # print(mapimg.shape) # print(img.shape) # 获取最大 概率 坐标 rateX = 0 maxRate = 0 color = np.array(mapimg) for ix in range(0, mapimg.shape[1] - img.shape[1]): # print(ix,end="\t") rate = self.matchX(ix, mapimg.shape, color, edge, img.shape) print(rate, end="\t") if maxRate < rate: rateX = ix maxRate = rate print("\n匹配量: %d 最大可能位置:%d 权重:%.2f" % (len(edge), rateX + 3, maxRate)) def matchX(self, ix, shape, color, edge): h = shape[0] w = shape[1] # 从左 向右 开始匹配 获取 左右两端 颜色色差总和最大的 colorCount = 0 for e_pos in edge: pos = e_pos.split(",") x = int(pos[0]) + ix y = int(pos[1]) value = int(color[y][x]) if x - 1 >= 0 and x + 1 < w: colorCount += abs(int(color[y][x - 1]) - value) return colorCount # img 缺口图片 # mapimg 匹配的图片 def matchFull(self, imgname, mapimgname, imgwh, mapimgwh, zoomx): img = cv2.imread(imgname, -1) img = cv2.resize(img, imgwh) # # exit() mapimg = cv2.imread(mapimgname) mapimg = cv2.resize(mapimg, mapimgwh, interpolation=cv2.INTER_AREA) # # img_ext = os.path.splitext(imgname) # img_resize = img_ext[0] + "_resize" + img_ext[1] # mapimg_ext = os.path.splitext(mapimgname) # mapimg_resize = mapimg_ext[0] + "_resize" + mapimg_ext[1] # # cv2.imwrite(img_resize, img) # cv2.imwrite(mapimg_resize, mapimg) # # mapimg = self.imgGray(mapimg_resize) # img = self.imgGray(img_resize) mapimg = cv2.cvtColor(mapimg, cv2.COLOR_BGR2GRAY) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) edge, minX, maxX, minY, maxY = self.imgEdge(img) # print(mapimg.shape) # print(img.shape) # 获取最大 概率 坐标 rateX = 0 maxRate = 0 color = np.array(mapimg) for ix in range(0, mapimg.shape[1] - img.shape[1]): for iy in range(0, mapimg.shape[0] - img.shape[0]): # print(ix,end="\t") rate = self.matchXY(ix, iy, mapimg.shape, color, edge) # print(rate, end="\t") if maxRate < rate: rateX = ix maxRate = rate print("\n匹配量: %d 最大可能位置:%d 权重:%d" % (len(edge), rateX + zoomx, maxRate)) return rateX + zoomx def matchXY(self, ix, iy, shape, color, edge): h = shape[0] w = shape[1] # 从左 向右 开始匹配 获取 左右两端 颜色色差总和最大的 colorCount = 0 for e_pos in edge: pos = e_pos.split(",") x = int(pos[0]) + ix y = int(pos[1]) + iy value = int(color[y][x]) if x - 1 >= 0 and x + 1 < w and y - 1 >= 0 and y + 1 < h: colorCount += abs(int(color[y][x - 1]) - value) return colorCount def arr2txt(self, rgbx,min=0,max=255): a = np.array(rgbx) txt = [] for y in a: tmptxt = "" for x in y: if x>=min and x <=max: tmptxt += " "+str(int(x) + 1000)[1:4] else: tmptxt += " " txt.append(tmptxt) content = "\n".join(txt) return content # https://007.qq.com/online.html def img2color(self,img=None,file=""): if img is None: img = cv2.imread(file) else: img = np.asarray(img) dt = dict() dt["r"] = img[:, :, 0] dt["g"] = img[:, :, 1] dt["b"] = img[:, :, 2] dt["gray"] = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) return dt def img2txt(self, file="", txtfile="", img=None, color="gray"): dt = self.img2color(file=file,img=img) content = self.arr2txt(dt[color]) if txtfile != "": with open(txtfile, "w+", encoding="utf-8") as f: f.write(content) return content if __name__ == "__main__": start = time.time() tool = ImageTool() # 测试规则 # tool.matchFull("./data/1.png", "./data/2.jpg",(56,56),(280,160),0) x = tool.matchFull("./data/1.png", "./data/2.jpg", (68, 68), (341, 195), 12) print(x + 2711 + 10) end = time.time() print("耗时:%.2f秒" % (end - start))
图形界面部分
import sys from PyQt5.QtWidgets import QWidget,QMainWindow,QApplication,QDesktopWidget,QHBoxLayout,QVBoxLayout,QPushButton,QLineEdit,QSpinBox,QLabel,QFileDialog from PyQt5.QtCore import Qt,QObject from PyQt5.QtGui import QPixmap class CombWidget(QObject): def __init__(self): super().__init__() def combHBox(self, lst: list): h = QHBoxLayout() for x, y in lst: h.addWidget(x, y) wg = QWidget() wg.setLayout(h) return wg def combVBox(self, lst: list): h = QVBoxLayout() for x, y in lst: h.addWidget(x, y) wg = QWidget() wg.setLayout(h) return wg def Singletonfunc(cls): _instance = {} def _singleton(*args, **kargs): if cls not in _instance: _instance[cls] = cls(*args, **kargs) return _instance[cls] return _singleton class Comimg(QMainWindow): def __init__(self): super().__init__() self.initUI() def initUI(self): self.status = self.statusBar() v = QVBoxLayout() comb = CombWidget() #self.imga = self.imga_btn = QPushButton("打开图片") self.imga_btn.clicked.connect(self.openImga) self.imgb_btn = QPushButton("打开图片") self.imgb_btn.clicked.connect(self.openImgb) self.imga_lbl = QLabel("") self.imgb_lbl = QLabel("") # 灰度图片 self.imga_gray_lbl = QLabel("") self.imgb_gray_lbl = QLabel("") self.area_txt = QSpinBox() self.area_txt.setMaximum(100) self.area_txt.setValue(5) v.addWidget(comb.combHBox([(self.imga_btn,2),(QLabel(""),6),(self.imgb_btn,2),(QLabel(""),6),]),2) v.addWidget( comb.combHBox([(self.imga_lbl, 2), ( self.imgb_lbl, 2), ]), 10) v.addWidget( comb.combHBox([(self.imga_gray_lbl, 2), (self.imgb_gray_lbl, 2), ]), 10) v.addWidget(comb.combHBox([(QLabel("容错范围"), 1),(self.area_txt, 2), (QPushButton("action"), 17), ]), 4) wg = QWidget() wg.setLayout(v) self.setCentralWidget(wg) print("init ui") self.setGeometry(300,300,800,600) self.setWindowTitle("识别图片") self.center() def openImga(self): self.status.showMessage("打开文件a") file, ok = QFileDialog.getSaveFileName(self, "选择图片", "C:/Users/Administrator/Desktop/", "图片文件 (*.png;*.jpg;*.gif)") if ok: self.imga_lbl.setPixmap(QPixmap(file.strip())) self.status.showMessage(file.strip()) #self.imga_lbl.setScaledContents(True) def openImgb(self): self.status.showMessage("打开文件b") file, ok = QFileDialog.getSaveFileName(self, "选择图片", "C:/Users/Administrator/Desktop/", "图片文件 (*.png;*.jpg;*.gif)") if ok: self.imgb_lbl.setPixmap(QPixmap(file.strip())) self.status.showMessage(file.strip()) #self.imgb_lbl.setScaledContents(True) def center(self): qr = self.frameGeometry() cp = QDesktopWidget().availableGeometry().center() qr.moveCenter(cp) self.move(qr.topLeft()) if __name__ == "__main__": app = QApplication(sys.argv) comimg = Comimg() comimg.show() sys.exit(app.exec_())
很赞哦! (0)
相关文章
文章评论
-
-
-
0条评论